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Abstract. A quantum mechanical treatment of an electron plasma in a constant and homogeneous
magnetic field is considered, with the aim of (a) defining the range of validity of the magnetoionic
theory (b) studying the deviations from this theory, in applications involving high densities, and
intense magnetic field. While treating the magnetic field exactly, a perturbation approach in the
photon field is used to derive general expressions for the dielectric tensor e,g. The properties of ¢xp
are explored in the various limits. Numerical estimates on the range of applicability of the magneto-
ionic theory are given for the case of the ‘one-dimensional’ electron gas, where only the lowest
Landau level is occupied.

1. Introduction

The recent discovery of pulsars has triggered a series of papers [1] dealing with the
properties of an electron gas imbedded in a superstrong magnetic field (~10'* G).
Such fields had no existing proof other than the flux conservation law which dictates
fields of the order of 10° G for white dwarfs and 10'® G for neutron stars [2] (see,
however, newly proposed mechanism LOFER [3]). Very recently, fields of 10° G have
indeed been found in white dwarfs although the statistics are still rather poor [4]. It
seems, therefore, that whatever the creation mechanism will eventually turn out to be,
such enormous fields have great probability of being really attached to the collapsed
bodies such as neutron stars. In a series of papers, one of the authors has investigated
the modifications induced in many physical processes by such fields [5]. Because of the
existence of plasma, the computation of many of those processes calls for the use of the
dielectric constant of the medium [6]. A plethora of formulae exist for such a dielectric
constant, dealing mostly with the classical aspect of the problem [7]. The formula most
used for ¢, is the one given by the so-called magnetoionic theory which, in its deri-
vation, is entirely classical [8]. The quantum mechanical treatment makes use of the
density matrix or of the Wigner distribution function and Boltzmann equation [9].
Since the quantum theory of transport processes is a subtle subject not totally under-
stood at the moment, we felt that there was the possibility of having missed some
quantum mechanical properties by just adapting an equation that is essentially clas-
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sical. Besides, we wanted to investigate under what conditions the magnetoionic
theory is reproduced by the quantum mechanical treatment.

After obtaining the quantum mechanical formulae for the dielectric constant, we
will show that quite independently of the specific form of the distribution function,
the long wavelength approximation reproduces the results of the magnetoionic theory.
This puts an end the to question, indeed asked many times, as to whether the degene-
racy of electrons often encountered in problems related to pulsarsis properly taken into
account by the magnetoionic formulae. We also recover the classical polarization
tensor IT;;(k,w) in the limit of large quantum numbers. We want to emphasize that
our treatment does not rely on the Boltzmann equation or Wigner distribution function.
It follows from the very quantum mechanical definition of &,.

2. Wave Function and Eigenvalues of an Electron in a Magnetic Field

For the sake of completeness, we shall briefly review here the quantum mechanical
properties of an electron in a constant and uniform magnetic field H. (For a detailed
study see [5, 10].)

In the presence of such a field, electrons are trapped in quantum orbits which emerge
from the Schroedinger Hamiltonian

TCZ

e
H=—;, m=p+-A,.
oM P o

Taking the z-direction to coincide with that of H, one has (Landau gauge) A, =(—yH,
0, 0). The Hamiltonian and its eigenstates then take the form

1
H = M [(px — Mogy)® +P§ + Pzz)] , €))

Prpn. = W (¥ — @’p,/h) exp[i (px + p,2)/H],

where a=(i/Mwy)*; wg=eH/Mc is the cyclotron frequency; w,(u) are the normalized
harmonic oscillator wave functions, i.e.,

wa () = (a/n2"n) """ exp [ — u?[2a*] H, (u/a), (2)

where H, stand for the Hermite polynomials [11]. The Hermite polynomials of
Equation (2) relate to the one defined in this reference by the equation H, (k)=
=2"2He,(ic\/2).

The energy spectrum is correspondingly given by

p:
oM’

E,(p.) = hog (n + %) + 3

The momenta 7, and =, are not constants of the motion, as one can easily check

that
[ﬁx, TL'y:l = — ithH’ [TE:ZL, 'ni] = i 2 (Mh(DH) Ty, (4)
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Where, n, =n,+in, act as raising and lowering operators

ny|lnpep,y = Cn+ 1p.p,> (5)
with

CP =— [2Mhwoy(n+ 1)V?,  C7 =— /2Mhw,n'?

3. The Dielectric Tensor

An electromagnetic wave of frequency w, applied on a plasma, gives rise to induced
charge and current densities which can either sustain, in a self-consistent way, or
damp the propagation of the wave. Thus, the plasma will be transparent to the fre-
quency o, if the set of Maxwell’s equations (or equivalently, the wave equation)
accepts a solution at this frequency.

For a particular Fourier component (k, w), the wave equation is [12]

2
<k25 —kk —w8>E —0 (6)
ap a™B cZ ap B V-

The dielectric properties of the medium are contained in the tensor ¢,; known as the
dielectric tensor. The induced current density is given in terms of ¢,z as [12]

w
=i (6. e4) Ep, 6
.]az 471'( af aﬂ) B ( )
as may be easily be proved from Maxwell’s equation
47 W w
(VxB),=—j,—i— E,=—1i—¢,E,;
C C C

while the induced charge density is determined from the continuity equation, o=k -j/w.
Equation (6) has the form of an eigenvalue problem having solutions only for those
values of k%*c*/w?*=n?* which make the determinant vanish — i.e.,

det [n2 (Oap — anp) — &,5] =0, @)

where n,=k,/|k|. To each positive definite solution of the dispersion Equation (7),
there is a corresponding wave which propagates with a refractive index n=kc/w.

The dispersive properties of the medium thus depend on the precise form of ¢,.
In what follows, seeking the dielectric response of a magnetized quantum plasma to
an electromagnetic perturbation (A,¢), we will choose a gauge such that the scalar
potential ¢ =0, and, therefore, E=i(w/c)A. The vector potential will, therefore, obey
Equation (6) just like E.

To derive a quantum mechanical expression for ¢,z, we shall now evaluate, in pertur-
bation theory, the (k, w) Fourier component of the current induced by the external
field

A(t)=Aexp[i(k'r—wi)] + cc.
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The current operator in second quantized form is

. e + e e

j, ) =——y'(@®){p+-A;+-A() )Y (r) +cc (8)
M c c

The unperturbed Hamiltonian is
e et o+ a0 v Y E,al
PYy: r N = n%nQn
Y P oo .

where g, is the destruction operator for an electron of the corresponding state in the

Landau spectrum, Equation (1). The operators a, obey the usual anticommutation

rules, and the expansion zp(r)=z,,qb,,(r)a,, was implied in the above equation.
Treating A(t) as a small perturbation, we write the interaction as

= j & (r) (m A (1) ¥ (1) =

e . )
~ e 2 [{n|n*-A|m) e ™" + {nln ™" A|m) ] ala,, 9)
c

with
n* =4 (exp[ikr] n + mexp[ik-r]). (10)
Let the state vector ¢y, represent a quantum state of N electrons in the absence of

external field, i.e., Hypno=ExoPno- In the presence of the perturbation, one has to
first order in A

Pyo = Pro + PY0’ € + Pio) €, (11
n|w*-A
5\:46) == Z “< | i a;amquO =
MC ENO_WO +Fl(0
e (n| T Alm)
=—— ala, _—, 11a
MCEZ n d)NO 0)+C0m,, ( )
—k
=y _ e ¢ {m|n "-Aln)
=—— ) ala, A 11b
NO Ml m@n®Pno ®— o (11b)

nm

Where ,,,=k"(E,,—E,), and {m| |n) is the matrix element between one-electron
states.
It is easy to see that the resulting expression for the current is

i(k, ©) =i (k, w) + i (k, 0) + ' (k, w), (12)
. e2
J(l) (k: (D) =- ”M_ A <¢N0’ J dserlp(f)NO) =
C
e’N
=——A,
Mc
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2
i (k, 0) = — ]\;Tc <¢No’ fd%wn 'MSH))
__ 2@0 1y <ol im Gl Alay.

M?ch mpfy

nmpq

D — Wy,

2
jgs)(k, W) =— ]ijc< NO >Jd3 Wﬂ_klﬁqszvo)

2 k. -k
e Z<alama§aq> {n|m"-A|m) {p|m, lq>.

M?ch ® + Opy

nmpg

Comparing this expression with Equation (6a) we obtain the quantum mechanical
expression for ¢,; as

2 2
(0)) Wy
Eaﬂ = (1 - CO2> 5aﬂ + aﬁ s

oy L Z[<nln; m | my 13
NMh 0 — Opy,

nm

RGEA <m|no,"‘1n>}fn(1 5

w + 0,

where we have put f,=<{ala,>, wf,z4n Ne?|M.
By interchanging the dummy indices in the second term, Equation (13) can be recasted
in the following more instructive form

Z(nlﬂ_kim> A

(fo— Ju) = (13a)

b = N M/

o —1 Z {n|my ¥ m) <MIn’,§|n>_<nI7r',§lm> (m|m, ¥ |n) 7
 NM# "

nm

W — Wy, W+ Oy

(13b)

Either of the expressions (13a) and (13b) will be used on convenience in the following.
It is worthwhile to notice that the statistical factor (1—f,,) in Equation (13), which
is a manifestation of the Pauli exclusion principle, has disappeared in (13b).

The matrix elements appearing in the expression for ¢,; may be evaluated by making
use of the wave functions, Equation (1). It is easy to see that putting k, =0

(H'pepl \mg| mpep.y = 852877 + bk, (n' |m2| n), (14)

where ni* =exp [ik,y] (r,+%4kk,). By making use of Equation (5) one can cast the
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resulting integrals in the form [13]

mie = [ (1) w, () exp k]

— 00

= CmnImn (%azk)z?) ’ (15)

where

a’p
. C,,=i"""explia’kh™p,
p p[ Px] (16)

I (0) = (mn))" ' exp[— /2] " "207 " (o),

and 0 (o) are the Laguerre polynomials. The functions I,,,(¢) of Equation (16) form
an orthonormal set and have been studied Extensively in the literature [14].

One finds

usy-—

(m|n| ny = — i (AMhog)'? C,,IL,)

mn >

k
{m|mk| ny = AMhoy)'* C,, (If,;’ + 42 Im,,>, (17)

J2
where

ImnEImn(%azki)’ Ifni)=\/ nIm,n—l i\/n+ 1Im,n+15 and k_LEky'

4. Statistical Averaging

It is now time to examine more closely the nature of the summations ), and of the
statistical quantities f, appearing in Equation (13). The quantum states may be defined
by the quantum numbers n, p_, p, of Equation (1) and the spin quantum number, s= +1.
The inclusion of the spin is straightforward in our calculation. It modifies the spectrum
Equation (3) by an additive quantity, & 3/wy, making all but the lowest Landau levels
doubly degenerate. The modified spectrum is

»?
E,,= M + hogn,

where p=p,. The level degeneracy due to spin is
a,=1 for n=0,
a,=2 for n>0,

while the additional degeneracy in the quantum number p, has been discussed in the
literature [15].
The density of electrons is expressed by

N=> _ Moy °°d E 18
_vZﬁlpxps'—(zTh)EZanJ‘ pf( np)’ ( )

npxps

where V is a macroscopic normalization volume.
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Turning again to Equations (13), we note that the summation over p’, p., s’ of the
intermediate state |m)=|m, p’, p., s'> becomes trivial because of the §-functions in
the matrix element Equation (14). The corresponding conservation laws are p’ =p+
+hk,, p.=p., s'=s, the upper and lower signs refer to the first and second terms in
Equation (13b). We may therefore write Equation (13a) and (13b) as

T 1 (tazﬁ)mn
W), ooy B~ L "

mnppsxs

— __1 (taﬂ)mn _ ( (1))m"
= N 2 [w—wmn(p,p+hkz) a)+wmn(p,p_hkz):|f(Enp);
x (20)

with

(taﬂ)mn = <}’l1 na_kl |m> <ml n’f;l ln> s

Mii

(15 ) = v < it m (m| g ¥ [,

2
z

p
(p, p+ k)= (m — + 2k 4+
O (P> P )= (m —n) oy i Y,

Substituting Equations (17) for the matrix elements, we find for the components of
the tensor 7,; the expressions

w ak 2
tx lI | tyy:;<1;t)+ﬁ1mn> >

oy ak
t, —z—<If,,T,)+ : >If,,,,), tye = — tyys

\/2 mn

tz A AR (p + 1hk) Imna (21)
1/2
Oy
t =_txz:_ N +Lhkz Imnlgnn)a
zXx l(2Mh> (p 2 )
1/2
Wy 4 ak,
tz =tz= ANTE +—Lhkz Imn Iﬁnn)—‘_ I
o <2Mh> (p+ 3ik:) < J2

The argument in the functions I, is $a?k? as before. Similar expressions may be
easily written for the tensor t(l)
The integral over p in Equatlons (19) and (20) is performed under the analyticity

convention [16],
1 1

Iim ———=P—+— —ind (a) + com,,). 22)
a—0 O + ©,, +in o+ o,
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Thus the principal value of the integral in question will give rise to the Hermitian
(refractive) part of the tensor 7,5, while the integral over the J-function gives the
antihermitian (absorptive) part.

The case of propagation along the magnetic field (k| |H) is of particular interest
because it brings out simple properties of the medium. In the following paragraph
we shall give a detailed study of absorption and refraction in this direction.

5. Longitudinal Propagation k| |H

In this case (k, =0), one has

I (0) = 8, IE)(0) = /no"_, + /0 + 167, ,.

Equations (21) then give ¢, =1,,, t,,= —1,, so that we can express all four components

by introducing the linearly independent quantities

- nwydy,—
t, =1 i, =
* =+ {(n + 1) gy 4

1
by = M (p + 3hk,)* 57, (23a)
t =1, =0, t,=1t,=0.
Similarly, we find
(1) — 1) ¢ 1y _ J(+ 1) 0pb) 23b
S {nwﬂéﬁq (236)
D g

Accordingly, we find from Equation (20)

n+1 1
= - E ,
T+ + 2 f pk th pk + hkz f( nP)

Qo T m 2M |

(24a)

1 (p + Lhk)? (p — 3hk)* 7
. d E ),
= =7 Map, Z n f P ok W pk RS i |/ (Bn)
n — — w —
M oM YA

(24b)

where @, =w+ wy. We have also introduced (¢f. Equation (18)) the quantity

EZ fdﬂ%)Nmy
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The principal value of the above integrals gives the refractive part of 7,;in accordance
with Equation (22). For the absorptive part we note that the integral over the §-func-
tion in (19) gives quite generally

it M
T;iﬂ = F )6— Z an (tflﬂ)m” [f(Enpz) - f(Enpl + hw)] s (25)
0 Mz
with
M
p=—|o—lo,]—%ihk,, l=m-—n.

Substituting (23a) we find, accordingly.
Mwy

kP, Za" {n T 1} [f(Enpi) - /[(Enpi + ha))],

. M?*w? -
T;iz = In hk3P E a” [f(EnPO) - f(Enpo + hw)] ’
0

T4 =in

(25a)

where
pi :kﬁlMCOi i%hk, p():k_lM(l)_%hk.

6. Special Cases
A. CLASSICAL LIMIT

In the limit of large quantum numbers, {(n) > 1, the discrete spectrum approaches a
continuum. The quantum mechanical formulae then lead to the corresponding clas-
sical expressions by the following procedure [15]:

Moy q 2M*wy q q
= ——0 a - — .
Qery [, ) P ey ) ) O
nppsxs n — o0 0 —

Now 2M ~'hogn=v}=v2+v} so that [dv] =1/r{[dv, dv, and, therefore,

Moy q 2M3 & 26)
s a - .
(2nh)? " P (2nh)? v

Equation (18) correspondingly becomes N=2M>(2nk)~> [d*v f(v). In rewriting
Equation (19) we have

hk
E,,—E,=AE="h |:le + k,v, (1 + 2M:) )] ~

= h [le + kzvz]a
where
l=m—n, v==n/M, p =p+ik,.
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Assuming that /<n, hk,<p, we may write

map o P(lendf O,
f‘(Emp')—'f'(Enp)=Af‘_‘M<v_L aUL+kZaUZ>,

consequently, Equation (19) becomes

h
t

log of of M
+k, . 27
fap = N(2nﬁ)3 Z j ( av) w — log — kv, @7)

We can now make use of the asymptotic expression (n> 1) [17]

a’k? kv
I, <—2%> ~ J, (ak,/2n) = J, ( ; l)

H

to cast Equations (21) in the following form

~ N
2 712 l']l . "
viJ; —iv? o J; —iv,v,JJ;

1, , (1) 1,
taﬂ = lv_l_ Jl UJ_ — U.L Jl
Y Y 0

1J
v, v,J,J; v, < l)J, v2J?
Y

-(27a)

-

<[ =

-

where o=k v, /oy, J,=J(0), J| =dJ,/dg. Equations (27) and (27a) are identical with
the well-known expressions obtained in the classical kinetic theory [18]. Our results
differ from Sitenko’s in so far as the x and y components of the tensor are inter-
changed. This is consistent with or choice of coordinates so that the propagation
vector k is in the yz-plane.

In deriving Equation (27a) we have also made use of the identities J;_; —J;,;=2J]
and J;_; +J;+1=2(1J,/0) to write (n>1)

hog\"*  _
( Ifnn)g_vl']l,:

1/2
hon I(+’+a—kflm,, >0, il 1+a2ki :
2M J2 0 21

The second term in the bracket of Equation (28) has been omitted. For strong mag-
netic fields, this is an excellent approximation except for very short wavelengths.
Numerically a?/2=h2Mwgz~3.3x 1078 H ! cm?, where H is the magnetic field in
gauss.

For long wavelengths when 9=k v, /oy <1 (numerically, v, jwg =1.7 x 10* (v, /c) x
x H™' cm), one has J,(¢) = J,(0)=0, ,. In this case, the tensor t,5 becomes independent
of the direction of propagation.

4

(28)
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For the absorptive part our equations give in this limit

2M3 log of of\ A
A — g Po( 7 Tk, ) —1
Tab N (2mh)? o, dv, | Fov )M
I=—w

X 5(60 - ZCUH - kzl)z),

which coincides with the classical prediction for the Landau damping.

B. DEGENERATE LIMIT

This limit is of particular theoretical interest since the description of a many-body
system of interacting electrons in terms of a single-particle Fermi spectrum (quasi-
particles) is known to be very good [19] (Throughout the derivation of Equation (13)
we have implicitly assumed that only single-particle intermediate states are important).

In this limit, the distribution function is f(E)=60(Ez—E). A Fermi momentum is
defined for each Landau level as

Lo nhiog\'?
) = /2ME, (1— - H) : (29)
F
and Equation (18) becomes
2Mawy w Moy
= P=_—=P,. 30
(Znh)ZZa"p P nnp O (30)

n

The integrals in Equation (24) can be evaluated exactly, and one finds

Ty = 2 a,,r(i") ,
Mo, — k(Pg) F 3hk)
v =F —— | log ORI
kPO Mwi +k(pF ijhk)
M’wi — k*(pP F 1hk)?
Mo — K () £ 3hk)’

+ nlog

] (31)

M’w? ‘cuzM2 — k2 (pi + Yhk)?
T, =1+ 3 a, logl——; CaRC) ,
kP, | 0?M?* — k2 (p{ — Lik)

n

where P, is defined by Equation (30).
In the limit 7k/2p{” <1, it is straight forward to see that [20]

M  |Mw, —kp{ hMk?p?
R A9 kel Y SRR Sl £ (31a)
k Mwi +ka M wi '_k pF"Z

A general and more systematic study of the long wavelength limit is reserved for the
next paragraph.
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For the absorptive part we find from (25a)

ng

Mo n
A _ - H
Ty =1 Pok Z a, {n + 1} (32)

n=ng—ne

where np= Ep/hwy, and n,~w/wg gives the number of occupied levels which can be
excited above the Fermi surface by the radiation Zw.

7. Long Wavelength Limit Magneto-Ionic Theory

We first remark that for a?k3/2<n™1, I, (a®k?/2)=~ I, (0)=34,,, and therefore Equa-
tions (21) approach the values of Equations (23) in this limit. The tensor 7, then
approaches the values given by Equations (24) and (25a) if we substitute &, for k.

We now look for the limit of these equations when k,—0. The bracket in Equation
(24a) may be written as

hk? k
+ (2n + )¥—<a)i ?\/I)

pk\* KK*
% ~%31) T @

Dropping the k* term in the denominator we obtain

H=$?Za,, J dpf(E,,p)[w __1 i(2"+1)(hk /2M)]
0 +

PkIM ™ (w. — pk/M)*

(33)
and, similarly,
= e Z J 4pf (E) (p + 390’ (33
These expressions approach their k=0 values provided that
(@) <Ipl> “ <
a — <L 0,0y,
p M +
hk? (ni) k
b —Q2n+1)=—— , 34
(b) s Gt 2MwH<wi (34)
(© k < plh,
Correspondingly, one finds in this limit
Oy 3k% (p*>
‘Ci—ia)—i, TZZQ—F—M*T<1 (35)
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or, by Equation (13),

2
gal—— P g ] L (36)

These results are identical with the predictions of the classical magnetoionic theory
[8]. It is noteworthy that Equations (36) were derived independently of the form of
the distribution function f (E,,), and therefore are expected to hold equally well for
equilibrium or nonequilibrium situations.

Equations (34) may be used to check whether the classical results, Equations (35),
are applicable in cases of physical interest. Should Equations (35) give indices of
refraction kc/w inconsistent with Equations (34), one would have to use a refined theory
based on Equations (24) and (25).

8. The One-Dimensional Gas

A. GENERAL CONSIDERATIONS

At the superstrong magnetic fields which are probably associated with neutron stars,
an interesting situation arises, when the characteristic energy of the electrons is lower
than the excitation energy of the Landau levels (p?/2M <Fwy). Only the lowest n=0
level is then populated, and the mobility of the electrons is therefore entirely deter-
mined by the value of p,, thus giving rise to a one-dimensional electron gas. Low
density, as well as an intense magnetic field, is necessary for this situation to be realized,
since at densities N> 1028 x H,,%? ecm™3, where H,,=H/10'? G, the Fermi energy
of the electrons becomes as high as Awy. Electron densities and fields satisfying this
condition may arise in the plasma, which forms the atmosphere of a neutron star.

Retaining only the =0 term in Equations (24), we find after a partial integration

[ee]

Moy of
T =4 dp - logip ¥ 3hk — w . MJk|,
P, op
“ 37)
w*M? of (
=1—-— dp =1 1hk)* — w*M?K?
Tzz hk3P0 J p ap Ogl(p + 2 ) 2 / l:

el

for the absorptive part of 7,, Equation (25a) give

4

T_ kPO [f(E ) f(Ep— + hw)]’
MZ 2

T, =in ﬁgpo [f(E,,) — f(E,, + hw)];

while the component % vanishes in this case. In the case of a degenerate electron
plasma these expressions reduce to the n=0 term of Equation (31). We shall next
consider the degenerate case as an example, which can be treated analytically. We
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will establish the domain of validity of the magnetoionic theory for this case, and
discuss the properties of ¢,z outside this domain.

B. DOMAINS OF APPROXIMATION

It will be convenient for our discussion to introduce the following dimentionless
parameters 4 =pk/Mw, B=pk/|Mwy, B,=pk/|Mw., C=hk|p. p, here, represents a
characteristic value of the electron’s momentum in the z-direction. According to
Equations (34) these parameters must be small compared to unity for the magnetoionic
theory to be applicable.

Writing 7,4 in terms of these parameters we obtain for the degenerate case

1C +Bi' +2
= lB‘l lo -+ 7 s
T4 7 g %CiB;l —9 "
1+3472C711 A7 - (C+2y o
= 0 .
BT —Gc -2y
Numerically we find {|p|>=3pr=2.51 x 1072 x N, ; x Mc, wy=eH/Mc=
~1.76x101% s 1,
1 pgp kc - -
’31\715;2‘51 x 1072 x n x N,; x H{S,
1)
B=AZ =143x 107" x nx w9 x Nyy x H{2, (39)
Oy
100 ) )

Where n=kc/w stands for the index of refraction, and w;,=w/10'%s71,

The domains for the various approximations are summarized in Figure 1. Two
such domains are defined for the transverse components 7.. In the long wavelength
regime B, C <1 the magnetoionic expressions are valid, and the corresponding trans-
verse plasmons are given by the classical dispersion relation n3 =1 —a)f,/w (0t op).
In the short wavelength region B, C> 1, however, one finds n% 1 —a)ﬁ/wz, a result,
which is independent of the magnetic field. Correspondingly four separate domains
of approximation are defined for t,,. Notably in Region II (Figure 1) while 7., are
still given by the M. 1. theory the longitudinal component 7, is not. Infact 7,, becomes
quite singular near the separation line of Regions I and II.

The above considerations as well as the general expressions Equation (37) are valid
for propagation along the magnetic lines of force (§=0). In any other direction of
propagation t,; depends on the angle 6 through the tensor ¢, cf. Equation (21). This
tensor, however, being a manifestation of the details of the Landau orbits of the
electron, becomes essentially independent of the angle, when the wavelenght is long
compared to the Larmor radius i.e. when ak <1. It is thus concluded, that the region
C<1 (which includes both Regions I and II in Figure 1) is free of this dependence.
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Fig. 1. The (n, w) diagram showing the regions of the various approximations. The magnetoionic
theory is valid in Region I (small » and long wavelengths). A simply modified version of the M. L.
theory was shown to apply throughout the region of long wavelengths embracing both Regions I and
II. When the wavelengths become shorter than the Larmor radius a = (i/Mwg)/2, details of the
Landau orbits may become important. Here wm=21.76 X 1019 s~ and {p>~2.5 X 102 Mec.

The only remaining dependence of the angle is found by replacing k,=k - cos 0 instead
of k in Equations (39). The dependence on the structure of the Landau orbits is expect-
ed to become important in the short wavelength Regions IIT and IV.

Before the foregoing analysis can be applied to the atmosphere of neutron stars,
the effect of the ions on 7,4, and the damping due to collisions would have to be con-
sidered. The ions contribute an additive term riﬁ, which is given by the classical
kinetic theory, so that 7,,=r1,,+ 75, with Tj, as given by Equation (37). From the
classical theory one knows, that the effect of the ions is an important one at low
frequencies w <(Z;/4;)wy/2000 [1,7], where Z,, A, stand for the atomic number and
atomic weight of the ion. The application to the atmosphere of a neutron star will be
reserved for a future communication.

9. Collisions

The effect of collisions can be formally included in our discussion by introducing an
effective collision frequency v through the substitution @ — w+iv in the denominators
of Equations (20). An estimate for v can be obtained in the relaxation time approxi-
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mation as v;=0dvN;, where N; is the density of heavy scatterers of type j, o the collision
cross section, and v the electron velocity.

For collisions with atoms and molecules ¢ is usually taken to be independent of the
velocity v and roughly equal to the geometric cross section mrZ where r, is the atomic
(or molecular) radius. For collisions with ions, neglecting the effect of the magnetic
field one obtains [7,21]

Zi 2\ 2
0;=2n (—2) log (1 + cot®30,).
mo

The minimum angle of scattering 6, is introduced because of the screening, and is
related to the ratio between the electron’s closest approach, and the screening radius.
This expression is accurate for 6, <1, otherwise a more detailed computation of the
screening effect is necessary, and multiple scattering also becomes important.

The presence of the intense magnetic field, however, may considerably modify these
results. One knows, for instance [22], that in field of the order of 10!? G, the atom
takes a strongly deformed shape, due to the magnetic constriction of the electronic
orbits, at the same time becoming much more compact than the Bohr atom. One may
therefore expect its effective cross section to decrease. Similarly the cross section for
the Coulomb scattering may be affected by the magnetic field as well as the screening
effect [23]. The quantum mechanical treatment of the Coulomb scattering in the mag-
netic field will be taken up in a future communication.

10. Conclusions

The dielectric tensor for a nonrelativistic electron gas imbedded in a constant and
homogeneous magnetic field was computed within the framework of the quantum
mechanical perturbation theory. Many-body effectsand the Fermi degeneracy were taken
into account within the accuracy of the random-phase approximation. We have used
a one-photon linearized approach, and therefore our results do notapply to the propa-
gation of intense electromagnetic radiation, where nonlinear effects become important.

Our computation is otherwise completely general. Going to the various limits we
have recovered a number of previously known expressions. We finally gave a detailed
and general discussion of the important case of the one-dimensional gas, which
presumably finds application in the atmosphere of magnetic neutron stars.

As shown in detail in the main text, the quantum treatment of ¢,; does not preclude
the use of the magnetoionic formulae, but merely defines the boundary of their
validity. The extent of this boundary was discussed numerically in the case of the
one-dimensional gas.

Acknowledgements

J. Ventura, NASA Grant NGR-33-013-040 wishes to thank Dr Robert Jastrow for
his hospitality at the Institute for Space Studies. He also wishes to thank Dr D. C.
Kelly for enlightening discussions on the subject of plasma waves.

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1972Ap%26SS..18..104C&amp;db_key=AST

5ESS. 8. T TO4T

rTI72A

120 V. CANUTO AND J. VENTURA

References

[1] Canuto, V. and Chiu, H. Y.: 1971, Space Sci. Rev. 12, 3.
[21 Woltjer, L.: 1964, Astrophys. J. 140, 1309.
[3] Lee, H. J., Canuto, V., Chiu, H. Y., and Chiuderi, C.: 1969, Phys. Rev. Letters 23, 390;
Canuto, V., Chiu, H. Y., Chiuderi, C. and Lee, H. J.: 1970, Nature 225, 47.

[4] Kemp, J. C., Swedlund, J. B., Landstreet, J. D., and Angel, J. R. P.: 1970, Astrophys. J. 161,
L77; also Astrophys. J. 162, L67 (1970).

[5] Canuto, V. and Chiu, H. Y.: 1968, Phys. Rev. 173, 1210; Phys. Rev. 173, 1220; Phys. Rev. 173,
1229.

[6] Canuto, V. and Chiu, H. Y.: 1970, Phys. Rev. A2, 518.

[7] Ginzburg, V. L.: 1964, The Propagation of Electronmagnetic Waves in Plasmas, Pergamon, New
York;

Stix, T. H.: 1962, The Theory of Plasma Waves, McGraw-Hill, New York.

[8] Ginzburg, V. L.: 1964, The Propagation of Electronmagnetic Waves in Plasmas, Pergamon, New
York, p. 82. See also ref. [1].

[9] Kelly, D. C.: 1964, Phys. Rev. 134, A641;

Quinn, J. J. and Rodriguez, S., Phys. Rev. 128, 2487 (1962). Reference to earlier work can be
found in these papers.

[10] Landau, L.: 1930, Z. Phys. 64, 629;

Johnson, M. H. and Lippman, B. A.: 1949, Phys. Rev. 76, 828.

[11] Mangus, W. and Oberhettinger, F.: 1947, Functions of Mathematical Physics, Chelsea, New
York. The Hermite polynomial of Equation (2) relates to the one defined in this reference by
Hy(3) =2"2Hen(3x/2).

[12] Bekefi, G.: 1966, Radiation Processes in Plasmas, Wiley, New York, p. 5.

[13] Mangus, W. and Oberhettinger, F.: 1949, Functions of Mathematical Physics, p. 120.

[14] Sokolov, A. A. and Ternov, I. M.: 1968, Synchrotron Radiation, Akademie Verlag, Berlin, p. 67.

[15] Canuto, V. and Chiu, H. Y.: 1968, Phys. Rev. 173, 1210;

Huang, K., Statistical Mechanics, Wiley, New York, 1963, Chap. 11, pp. 237-243.

[16] Galitskii, V. M. and Migdal, A. B.: 1959, Plasma Phys. Contr. Thermonuclear Reactions 1, 191.

[17] Sokolov, A. A. and Ternov, I. M.: Synchrotron Radiation, p. 86. See also Quinn, J.J. and
Rodriguez, S., Phys. Rev. 128, 2487 (1962).

[18] Sitenko, A. G.: 1967, Electromagnetic Fluctuations in Plasmas, Academic Press, New York,
p. 94. Our result differs from Sitenko’s in that the x and y components of the tensor are
interchanged. This is consistent with our choice of coordinates so that the propagation vector
k is in the z — y plane.

[19]1 Landau, L.: 1957, Sov. Phys. JETP 3, 920; ibid., 5, 101 (1957).

[20] Kelly, D. C.: 1964, Phys. Rev. 134, A641.

[21] Chiu, H. Y.: 1968, Stellar Physics, Blaisdell, p. 178.

[22] Cohen, R., Lodenquai, J., and Ruderman, M.: 1970, Phys. Rev. Letters 25, 467.

Canuto, V. and Kelly, D. C.: 1971, to be published.

[23] Horing, N.: 1969, Ann. Phys. 34, 405.

© Kluwer Academic Publishers * Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1972Ap%26SS..18..104C&amp;db_key=AST

